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Two iterative procedures for the transformation of canonical self-consistent 
field molecular orbitals to intrinsic localized molecular orbitals are proposed. 
A first-order method based on a series of (n x n) unitary transformations 
may be applied to orbitals which are far from convergence. The second 
method, based on Newton's method, yields quadratic convergence. NumericaI 
results based on Boys' criterion are presented for water, carbon monoxide, 
boron fluoride, nitric oxide, and methylacetylene. A composite method may 
be used to obtain rapid convergence for large molecules for which it is not 
practical to calculate the entire hessian matrix. The performance of the 
composite method is demonstrated by application to the dinitrogen tetroxide 
molecule. Highly converged localized molecular orbitals may be obtained 
for most molecules with five to eight first-order iterations followed by three 
or four iterations based on either the second-order or composite method. 
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1. Introduction 

As noted by Fock, the properties of a single-determinantal many-electron 
wavefunction are invariant with respect to a unitary transformation among its 
orbitals [1]. Such a transformation is given by 

X = U+ ,  (1) 

with vec to rs / t  and 4> each composed of a set of orthonormal spin orbitals. A 
single-determinantal wavefunction can be written as 

4 , 2 . . .  4, . . . . .  (2) 

where A is the N-e lec t ron  antisymmetrizer and N is the number of electrons. 
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The spin-orbitals ~i are defined as 

r  f o r i = l t o n ~ ,  

and 

~i+.~ =f~i[3 f o r i = l  ton~, (3) 

where a and fl are the rns = +1 /2  spin functions and n~ +ng =N.  The spatial 
functions f~ which minimize the energy of qb are determined by the self-consistent 
field (SCF) equations [2, 4], 

m s 
A s S S 

Fsf l  = E e iifJ for i = 1 to ns, and s = a or ft. (4) 
i=1 

For a closed shell Slater determinant, Fs, fi and e ~/reduce to 

L = ~ = P ,  (5) 

f7 =ff =f,, (6) 
and 

~ = ~ ~ = ~,j. (7) 

The canonical molecular orbitals (CMO's) are defined as those SCF orbitals, gT, 
which diagonalize the Fock operator [3-5], 

S A S S S 

(g ,  IFs lg , )  = ~,j = ~,8,~. (8)  
A S 

The CMO g~ is an eigenfunction of Fs with the eigenvalue e ~. For a closed shell 
Slater determinant, this is given by 

ff'gi = eigi. (9) 

Such orbitals are useful in the interpretation of molecular spectra [6, 7] and 
estimation of ionization potentials [8]. For closed-shell electronic configurations, 
CMO's reflect the symmetry of the irreducible representations of the molecular 
point group and therefore tend to be distributed through the entire molecule. 
Because of this delocalization, each spatial orbital g~ is a property of the entire 
molecule. If any part of the molecule changes, every CMO in the molecule may 
be affected. Consequently, it is difficult to compare the CMO's of one molecule 
to those of a related molecule. 

Because of the invariance of ~ with respect to unitary transformations among 
its orbitals, it is possible to define alternatives to CMO's. If only transformations 
which associate orbitals of like spin are considered, the spatial functions of the 
alternative SCF orbitals of spin s are given by 

f = U~g s, (10) 

where gS is composed of the CMO's associated with spin s and U s is an (n, x ns) 
unitary matrix. This transformation can be used to produce orbitals each of 
which is concentrated in a relatively small part of the molecule [9-11]. The 
resulting localized molecular orbitals (LMO's) usually have the symmetries of 
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reducible representations of the molecular point group. The elements of the 
transformation matrix Us are determined by the set of starting orbitals {gT}, and 
the criterion of localization. The spin index s will be suppressed in the following 
treatment. 

Lennard-Jones and Hall demonstrated that localized orbitals could be deter- 
mined for some molecules on the basis of symmetry principles alone [12-13]. 
These orbitals, called equivalent MO's, may be determined only for a few highly 
symmetric molecules. More generalized criteria are required to define LMO's 
for most molecules. Because all observable properties of a single determinantal 
molecular wavefunction are invariant to a unitary transformation, any such 
criterion must be based on a quantity which is not an observable property of 
the molecule. 

The most commonly used criteria of localization are based on maximizing or 
minimizing a functional of the form 

G = ~,,iL1 (ii, ii), (11) 

where the definition of (ii, ii) depends on the criterion of localization. The 
possible choices for the quantity (i], kl) include electronic repulsion integrals [5, 9] 

(i], kl)  = ( f i (r l ) fk(r2) lr~ 2 fi(rl)fl(r2)), (12) 

for which the sum G is to be maximized. Another criterion defines LMO's as 
those orbitals which minimize the sum of orbital self-extension integrals [10, 14- 
15]. In this case, (if, kl)  may be defined as either 

(if, kl) = (fi(rl)fk(r2)[r22 If,(rl)fz(r2)), (13a) 

or  

(if, kl) = (/il7 IfJ)' (fk 1715). (13b) 

A third criterion involves maximization of the orbital self-overlap of charge 
density [9, 11], for which 

(if, kl) = (r (rl)r (r2)lt~ (r12)[q~i (rl)q~/(r2)). (14) 

Localized orbitals obtained from any of these criteria have several useful features: 
they can usually be interpreted in terms of a Lewis or Linnett [16] structure and 
most LMO's are concentrated on one or two atoms. This facilitates the partition- 
ing of molecules into fragments, providing a basis for treating molecular proper- 
ties in terms of distinct functional groups [17-18]. The idea of functional groups 
can be used in a quantitative sense by the construction of molecular wavefunctions 
from the wavefunctions of suitable fragments [19-25]. Considerable a t t en t ion  
has been devoted to the use of LMO's in the study of electron correlation [26-28]. 

Each of these criteria defines a specific set of LMO's.  In addition, recent work 
has shown a close connection between LMO's and the Fermi hole [29]. The 
problem remains of finding the set of orbitals which satisfy a specific criterion. 
In some cases, especially with the self-repulsion and density criteria, this process 
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can be more difficult than the solution of the SCF equations (in terms of 
computational effort). This situation may limit the utility of the concept of LMO's.  

This paper presents a quadratically convergent method for finding orbitals which 
satisfy a criterion of localization. The next section briefly reviews the techniques 
previously developed for determining LMO's. The third section presents the 
principal methods developed in this work. The fourth section presents results 
obtained from application of these methods to water, carbon monoxide, boron 
fluoride, nitric oxide, methylacetylene, and dinitrogen tetroxide molecules. 

2 .  P r e v i o u s  D e v e l o p m e n t s  

In principle, there exists a unitary transformation relating a delocalized set of 
orbitals (CMO's for example) to a localized set. The general functional form of 
this transformation is unknown. As a result, several iterative procedures have 
been developed based on series of unitary transformations, each increasing the 
degree of localization of the set of orbitals. 

The transformation performed each iteration is given by 

f~+l~ = u~i~f~f~, (15) 

where f(t+l~ is composed of the more-localized orbitals. Edmiston and 
Ruedenberg proposed an iterative scheme based on a sequence of pairwise 
rotations [9]. In this approach, the matrix u ~t) is given by uii, where 

I = l  k = l ~ i o r j  
=cos al i k = l = i or/' 

(Uij)kll =sin.aii k = i > I  = j  
l - O s m  aii k = i < l = f 

- otherwise. (16) 

The matrix uii can be redefined in terms of the product 

uii = V, irii, (17) 

where the elements of T~ i are given by 

J = l  k = l  
(T..a., = tan otii k = i > l = j 

[=otana,, k=i <l=j 
- otherwise. (18) 

The matrix V0 is given by 

Vii (T*T v -1/2 (19) ~ -  ~ . - - i l  �9 i i  J 

with elements 

- 1  
(Vij)k~ cos,~j 

= 0  

k = l # i o r ]  
k = l = i  o r j  
otherwise. (20) 
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The rotation angle which maximizes the increase in the degree of localization 
of the (i, f) pair of orbitals is given by [9, 30] 

~q = t a n - l ( - B q / A i j ) / 4 ,  (21) 

where Aq and Bq are determined by 

A q  = (if, ij) - [(ii, ii) + (if, jj) - 2(ii, ]]')]/4 (22) 

and 

Bq = (ii, i]) - (if, ]]). (23) 

Each pairwise rotation increases the degree of localization of the pair of orbitals 
(fi, fs) by Dq, where Di~. is given by 

Dq = Air + (A~ + B 2 )  1/2. (24) 

The sequence of (i, ]) rotations is repeated until all values of Dij approach zero. 
From the definition of Dq, it follows that LMO's possess the properties Aq < 0 
and Bq = 0 [9]. 

The major part of the effort involved in determining localized orbitals by this 
type of approach is the effort required to calculate the appropriate integrals over 
orbitals. This problem is especially severe for the energy (Eq. (12)) and density 
(Eq. (14)) criteria. As such, it is essential to minimize the number of times these 
integrals must be recalculated. 

The matrices A and B determine n /2  independent pairwise rotations. The results 
of performing a set of such rotations depend on the choice of the rotations and 
the order in which the rotations are performed. Alternatively, it is possible to 
perform all n ( n -  1)/2 rotations determined by the matrices A and B. In this 
method, a partially transformed pair of orbitals (f~, f}) may be rotated by an 
angle o~q determined by the unrotated pair (fi, 1}). If the angles of rotation are 
small, then the errors introduced by using such incorrectly determined rotation 
angles are also small. However, if the rotation angles are large, the entire (2 • 2) 
rotation method is so crude that no serious damage is done by performing all 
possible rotations. Consequently, the pairwise rotation method based on all 
n (n - 1)/2 pairwise rotations has been found to converge more rapidly than the 
method based on the n / 2  independent pairwise rotations [5]. 

As an alternative to methods based on pairwise rotations, it is also possible to 
develop iterative methods based on (n •  unitary transformations. The first 
such method was proposed by Edmiston and Ruedenberg [9]. They proposed 
that the transformation matrix be defined as 

(~) = exp (eB), (25) UG 

where B is proportional to the gradient of the localization criterion with respect 
to the transformation matrix and e is a scalar constant. In the limit of small e 
or B, this reduces to 

u (z) = I + eB. (26) G 



112 J.M. Leonard and W. L. Luken 

Edmiston and Ruedenberg originally suggested that the scalar e be determined 
by trial and error. Taylor proposed that e be determined by [31] 

e = - B 2 / 2 J 2 ,  (27) 

where Jz is determined by the second derivative of the criterion of localization 
with respect to e. 

This transformation is based on the method of steepest ascents [31]. As such, 
it concentrates on the most highly determined elements of the transformation 
matrix, and performs very poorly with respect to the weakly determined elements. 
Consequently, such methods may require a large number of iterations to optimize 
a set of LMO's. In numerical implementation of Eq. (27) it was found that this 
method performed poorly on molecules such as methylacetylene [32]. 

Another (n x n) transformation scheme, called the eigenvector method, has also 
been proposed and tested [32]. This method resembles Taylor's method except 
that the gradient vector B is replaced with an eigenvector V of the corresponding 
Hessian matrix, and e may be determined by the eigenvalue associated with V. 
Transformations based on Fletcher-Reeves and Fletcher-Powell methods have 
also been investigated [33, 34]. These methods did not demonstrate any clear 
advantage over the steepest ascent method. 

As an alternative to the techniques described above, it is also possible to 
determine localized orbitals directly from the SCF equations using a modified 
Fock operator [9, 35, 36]. This direct method eliminates the need to transform 
canonical orbitals into localized orbitals. However, numerical tests of this direct 
method have been characterized by convergence problems [37]. Localized 
orbitals are also determined by the generalized valence bond (GVB) method 
and other methods based on strongly orthogonalized geminals [38, 39] or non- 
orthogonal orbitals [40]. These methods have the advantage of determining 
LMO's for correlated wavefunctions. However, they involve specialized MC-SCF 
methods and tend to require much more computational effort than the methods 
discussed here. 

3. Second-Order (n x n) Transformations 

The (n • n) unitary matrix transforming a less-localized set of orbitals to a 
more-localized set can be written as 

u = WR, (28) 

where W is the positive definite matrix given by 

W = (RR*) -1/2. (29) 

The matrix R will be defined as 

R = NT, (30) 
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where 

T = l + t  (31) 

and t is an antisymmetric matrix 

t* = - t .  (32)  

The matrix N is a diagonal matrix which normalizes the columns of R. Thus, 

Nq = (Y'k T~i )-l/2r~q. (33) 

The unitary matrix U is completely determined by the n (n - 1)/2 independent 
off-diagonal elements of T. This can be used to construct a vector t with elements 
h = to, where I = j  + i(i  - 1)/2 for i >j .  

Application of the transformation U to an orthonormal set of orbitals {fl . . . .  f,} 
produces a set of orthonormal orbitals {f~ . . . .  f ' }  given by 

f ' =  Uf. (34) 

The new value of the localization criteria, G', can be obtained as 

G ' =  ~ ( i T ] i T ) .  (35) 
i = 1  

This can be expanded in terms of the quantities tlj, given as 

G '  = Go + Er t tG l ( I )  + Y.I, I t & G 2 ( L  J )  (36) 

to second order. The terms in G'  are given as 

Go = ~ (ii, ii), (37) 
i = 1  

which is the value of the localization criterion prior to any transformation, 

G I ( I )  = G ffi j)  = 4Bij, (38) 

which is the gradient of the localization criterion with respect to the elements 
t~j, and G2(L  Y) = G2(ij, k l ) ,  which is proportional to the matrix of second deriva- 
tives (the hessian matrix). The diagonal elements of G2 are given by 

G2(ij,  if) = 8A,j, (39) 

and the off-diagonal terms of G2 are given by [32] 

G2( if, k l )  = [4(if, il) + 2( ii, f l)  - (H, f l)  - ( ll, //') ]&k 

+[4(i/, j k  ) + 2(if ,  ik ) - (ii, ik ) - (kk ,  ki)]Sj~ 

-[4(i/, fl) + 2(//, it) - (ii, il) - (ll, li)]Sjk 

--[4(ij, ik ) + 2(ii, j k  ) - (jj, j k  ) - (kk ,  kj)]Sa (40) 

for (ij) # (kl) .  
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In the limit of small rotations (Itql ~ 0), the (n x n) steepest ascent transformation 
proposed by Edmiston and Ruedenberg [9] and Taylor [31] can be written as 

h = eC1/4. (41) 

To obtain a quadratically convergent iterative procedure, the elements of the 
transformation matrix, t, should be determined by the corresponding elements 
of the vector 

tz = -G21G1/2 .  (42) 

However, two problems are associated with the use of this equation to determine 
the transformation matrix t. First, the number of elements contained in the 
hessian matrix Gz is on the order of n 4 (where n is the number of orbitals present 
in the set being considered). The presence of the delta functions in the definition 
of G2 reduces the number of non-zero matrix elements to something on the 
order of n 3. Even so, the dimensions of G2 make it somewhat inconvenient to 
manipulate. In addition, for the energy [5, 9] and density [9, 11] criteria, the 
functional (if, kl)  requires three-index integrals which are not required for any 
of the (2 x 2) rotation schemes. The computational effort required to determine 
these integrals is not inconsiderable, and the large number of these integrals can 
often be inconvenient to manipulate. These two problems can be avoided by 
the approximate method described below. 

If the off-diagonal elements of G2 are neglected, the transformation matrix, t 
is given by 

ta(i]) = - G l ( i j ) / 2 a 2 ( i j ,  g) 

= -Bq/4Ai j .  (43) 

This can be modified to give 

t'~(i]) = tan (~ii) (44) 

for i # j  and a~i determined by Eq. (21). For the case of only two orbitals to be 
locaIlzed, this is identical to the pairwise rotation scheme of Edmiston and 
Ruedenberg. When the number of orbitals present is greater than two, the (n x n) 
transformation determined by Eq. (44) is equivalent to performing all of the 
possible pairwise rotations simultaneously. This is in contrast to the conventional 
method in which all possible (2 x 2) rotations are performed sequentially. Unlike 
the sequential (2 x 2) rotation scheme, which preserves orthonormality at every 
step, the transformation matrix, T, determined by Eqs. (31) and (44) is not 
unitary. Instead, application of Eq. (28)-(30) determines a unitary matrix, U, 
which yields an orthonormal set of orbitals most closely resembling (in an RMS 
sense) those determined by application of T [41]. 

The conventional procedure used to convert the transformation matrix r to the 
unitary matrix U is based on diagonalizing the matrix RR + to determine W 
defined by Eq. (29). Such a procedure, however, may yield a matrix W '=  V W  
where V is an arbitrary unitary matrix and W' is not positive definite. In order 
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to avoid this problem, as well as to avoid the need to calculate the eigenvalues 
and eigenvectors of RR +, we have developed an iterative power series method 
which is described in the Appendix. 

The need to convert the transformation matrix T to a unitary matrix represents 
an extra computational burden not shared by conventional 2 x 2 methods. Our 
experience, based on use of the iterative power series method described in the 
Appendix, indicates that this is not a serious problem. Alternative methods 
based on 2 x 2 transformations have also been proposed [42]. 

In the limit of very small rotation angles, oLij, the transformation determined by 
Eq. (44) becomes equivalent to that obtained by the use of sequential (2 x 2) 
rotations. Consequently, the convergence properties of this approximate (n • n) 
method are identical to those of the conventional pairwise schemes. As will be 
shown later, the rate of convergence can be considerably improved through the 
use of Eq. (42). This transformation, however, does not lead to a properly 
localized set of orbitals unless all of the eigenvalues of the hessian matrix, G2, 
are non-positive. Because of this, such a transformation may not be applied 
directly to the canonical orbitals. 

In practice, a two-step procedure has been found to be effective. First, the 
transformation determined by Eq. (44) is used until all values of Aii (the diagonal 
elements of G2) are negative. At this point (or following a small number of 
further iterations), the transformation determined by Eq. (42) is used. Quadratic 
convergence is then obtained. 

The most serious drawback to the second order method described here is the 
effort required to calculate and manipulate the Hessian matrix. The order of 
this matrix is n ( n -  1)/2, where n is the number of orbitals to be localized. 
Consequently, this matrix contains on the order of n 4 elements determined by 
Eqs. (39) and (40). Because of the delta functions in Eq. (40), the number of 
non-zero matrix elements is only proportional to n 3. In spite of this, the need 
to calculate on the order of n 3 two-electron integrals not required by the first 
order methods represents a large burden which may render this method imprac- 
tical for the energy [5, 9] and density [9, 11] criteria. 

In the case of the orbital centroid criterion [10, 14, 15], all two-electron integrals 
are determined by products of one-electron dipole integrals. The first order 
methods all require 3n(n + 1)/2 dipole integrals over molecular orbitals. The 
second order method described here requires no additional integrals not required 
by first order methods. Consequently very little additional effort is required to 
calculate the Hessian matrix. 

The following sections report the results of calculations on ,water, carbon 
monoxide, boron fluoride, nitric oxide, methylacetylene, and dinitrogen 
tetroxide. Because of the factors cited above, all of these results are based on 
the orbital centroid criterion of Boys [10, 14, 15]. In spite of the advantages 
offered by this criterion, the large size of the Hessian matrix can become an 
obstacle to the practical application of the second order method to large 
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molecules. Consequently, we introduce a subset localization method for the 
N204 calculations which demonstrate how to obtain rapid, though not second 
order, convergence for large molecules. 

4. Results 

I. Water 

The convergence behavior of the transforraation determined by Eqs. (42) and 
(44) is demonstrated in Table 1. These results were obtained from the application 
of the Boys criterion (Eq. (13)) to the canonical SCF molecular orbitals of the 
water molecule. The orbitals are based on the standard Huzinaga-Dunning 
double-zeta (DZ) basis set [43] and the geometry of Laidig et al. [44]. 

The convergence of this procedure may be characterized by any of several 
quantities. One of these is D . . . .  the maximum value of Dij defined by Eq. (24). 
This represents the maximum increase in the degree of localization obtainable 
by performing a single pairwise rotation. Near convergence, the value of Dij 
may be approximated as 

D ,  ~ -B~/2A~ i. (45) 

Table 1. Convergence of localization procedures for the water molecule. These results are based 
on double-zeta SCF molecular orbitals. The first-order results are based on Eq. (44) and the 
second-order results are based on Eq. (42). Dma x indicates the maximum value of Dij defined by 
Eq. (24) and Trms is the rms off-diagonal transformation matrix element, Eq. (47). The values of 
Dmax and Trms are determined prior to the transformation. The first iteration starts with the canonical 
SCF orbitals 

First Order Second Order 

iteration Dma x Zrms iteration Dmax Trms 

1 1.3746410 0.6750231 a 
2 0.2223017 0.2602457 a 
3 0.0875848 0.2476258 a 
4 0.0107877 0.0523173 
5 0.0023628 0.0265749 
6 0.0008162 0.0156787 
7 0.0002821 0.0096118 
8 0.0001020 0.0057982 
9 0.0000374 0.0035681 

10 0.0000139 0.0021768 

15 1.04x 10 -7 1.89x 10 -4 
20 7.84 x 10 -1~ 1.65 x 10 -5 
25 5.95 x 10 -12 1.44 x 10 -6 

m 

m 

E 

0.0002821 
1.30 x 10 -9 
3.23 x 10 - i s  

p 

0.007303 
2.07 x 10 -5 
1.04 x 10 -9 

a Some diagonal elements of the hessian matrix are positive. 



Calculation of Localized Molecular Orbitals 117 

A closely related measure of the progress towards convergence is given by the 
root mean square off-diagonal element of the transformation matrix 

1/2 

Trms=[~j (Tij)2/n(n-1) ' (46) 

where n is the number of orbitals being localized. In the case of the transformation 
determined by Eq. (44), this may be approximated by 

Tr,~s~[i~(Bj4aij)2/n(n-1)] 1/2 (47) 

as the rotation angles, aij, become small. As shown in Table 1, this exhibits 
essentially linear convergence. 

The rate of convergence may be considerably accelerated by the use of the 
transformation defined by Eq. (42). This method, however, cannot be applied 
until all of the eigenvalues of the hessian matrix, G2, are negative. A necessary 
but not sufficient condition for the eigenvalues of G2 to be negative is for all of 
the diagonal elements of G2 to be negative. These are determined by the values 
of A~ i for i Cj. Consequently, calculation of the off-diagonal portions of the 
hessian may be delayed until the values of A ,  are all negative. At this point, 
the highest eigenvalue of the hessian may be calculated to determine if it is 
positive. If it is, the first-order transformation of Eq. (44) can be repeated until 
this eigenvalue becomes either zero or negative. Usually, it is not necessary to 
determine this eigenvalue on subsequent iterations once it has been found to 
be zero or negative. In order to avoid premature calculation of the hessian 
matrix, the first-order transformation is performed for a small number  of iter- 
ations after all values of A~j are found to be negative. 

Application of this procedure is illustrated in Table 1. In this case, all values of 
A~ i were negative after three iterations based on Eq. (44). Three additional 
first-order transformations were performed to avoid premature calculation of 
the hessian matrix. Three further iterations based on Eq. (42) yielded fully 

Table 2. Molecular geometry and locations of orbital centroids of the LMO's for 
water. These results are based on the orbital centroid criterion and a double-zeta 
atomic orbital basis set. All results are reported in atomic units 

Atom/Orbital X Y Z 

Oxygen 0.0 0.0 
Hydrogen-1 0.0 1.515263 
Hydrogen-2 0.0 -1.515263 

0-1s 0.0 0.0 
0-H1 0.0 0.790863 
O-H2 0.0 -0.790863 
0-~1 0.497437 0.0 
0-~2 -0.497437 0.0 

0.0 
1.049898 
1.049898 

0.000387 
0.595310 
0.595310 

-0.324101 
-0.324101 
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converged localized orbitals. These calculations required 4.13 minutes on a 
PDP-11 /44  computer. The first order method, used alone, required 26 iterations 
(9.58 minutes) to reach Tr,,s less than 10 -6. 

Table 2 indicates the molecular geometry used for this calculation, along with 
the location of the centroids of the resulting localized orbitals. As expected, 
these have the forms of an oxygen inner-shell orbital, two O - - H  ~r-bonds and 
two oxygen lone-pairs. The H - - O - - H  bond angle used is 110.6 ~ and the angle 
determined by the orbital centroids of the two ~r-bonds is 106.1 ~ The angle 
between the two lone-pair centroids is 113.8 ~ These results are in good agree- 
ment with those previously obtained by von Niessen [45]. 

4.2. Carbon Monoxide 

The locations of the centroids for the localized orbitals of carbon monoxide, as 
determined by the orbital centroid criterion, are shown in Table 3. The molecular 
geometry, double-zeta basis set and starting SCF orbitals were taken from the 
published tabulation of Snyder and Basch [46]. The LMO's  have the form of 

Table 3. Molecular geometry and locations of orbital centroids of the LMO's of 
CO and BF. These results are based on the orbital centroid criterion and a 
double-zeta atomic orbital basis set. All results are reported in atomic units 

Carbon Monoxide 

Atom/Orbital X Y Z 

Carbon 0.0 0.0 0.0 
Oxygen 0.0 0.0 2.132 
Carbon-Is 0.0 0.0 0.000870 
Oxygen-Is 0.0 0.0 2.131475 
C--O~I 0.347103 0.346354 1.514695 
C--O~2 -0.473503 0.127423 1.514695 
C--Oz3 0.126400 -0.473777 1.514695 
Carbon-~ 0.0 0.0 -0.767322 
Oxygen-~ 0.0 0.0 2.696387 

Boron Fluoride 

Atom/Orbital X Y Z 

Boron 0.0 0.0 
Fluorine 0.0 0.0 
Boron- ls 0.0 0.0 
Fluorine-Is 0.0 0.0 
Fluorine-/p 1 -0.346203 -0.346203 
Fluorine-/p2 0 . 4 7 2 9 2 3  -0.126719 
Fluorine-/p 3 -0.126719 0.472923 
B--F bond 0.0 0.0 
Boron-/p 0.0 0.0 

-1.195267 
1.195267 

-1.194107 
1.195078 
1.268829 
1.268829 
1.268829 
0.518928 

-2.040630 
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Fig. 1. One of the three equivalent localized molecular orbitals comprising the carbon-oxygen triple 
bond of carbon monoxide. The contour levels shown here indicate densities of 0.01, 0.02, 0.04, 0.1, 
0.2, and 0.4 electrons per cubic bohr starting from the outermost contour. The oxygen nucleus is 
on the right 

an inner-shell orbital and a lone-pair  orbital on each atom, with a set of three 
equivalent C - - O  r-bonds.  The shape of one of the r -bonds  is illustrated in Fig. 1. 

In this molecule, rotation of the three z-bonds  about  the internuclear axis 
produces no change in the degree of localization obtained. Because of this 
continuous degeneracy [47], one of the eigenvalues of the hessian matrix, G2, 
is zero and Eq. (42) is indeterminant.  Prior to convergence, this eigenvalue is 
found to be positive, and it asymptotically approaches zero as the orbitals 
converge to the localized results. 

In order  to apply Eq. (42) to a molecule with continuous degeneracy, the order 
of G1 and G2 may be reduced by striking out the row(s) and column(s) correspond- 
ing to the component  of largest magnitude of each eigenvector with a non- 
negative eigenvalue. The corresponding element(s) of the t ransformation matrix, 
T, are set to zero. As shown in Table 4, a small number  of such modified 
second-order  transformations (2-3) following five based on Eq. (44) are sufficient 
to obtain well-converged localized orbitals for carbon monoxide.  These results 
are in good agreement  with the results of von Niessen [45]. 
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Table 4. Convergence behavior of first and second-order localization transformations. The number 
of zeros specifies the number of eigenvalues of the hessian matrix which equal zero and ~min is the 
smallest non-zero eigenvalue. All results are based on the orbital centroid criterion 

No. of iterations 

A t o m  lst-order 2nd-order Trms No .  zeros  /~min Time a 

C O  25  0 8 .0  • 10 -6  - -  - -  1 9 , 4 0  

5 3 < 1 0  -8  1 - 0 . 5 8 9 0 8 1  7 ,50  

BF 1 5 6  0 9 .7  • 10 -5  - -  - -  1 1 8 , 6 0  

6 5 < 1 0  -8  1 - 0 . 0 5 0 1 1 9  1 4 . 0 5  

N O ( Z I I ) a  13 0 4 .0  • 10 -6  - -  - -  1 5 . 0 6  

5 3 < 1 0  -8  0 - 0 . 6 9 2 9 6 5  1 1 . 2 7  

No(ZFI)f l  2 5 0  0 6 .5  • 10 5 __ __ 1 7 1 . 8 2  

8 6 < 1 0  8 0 - 0 . 0 0 2 3 7 1  1 4 . 1 9  
NO(2.~,)~ 15 0 8 .0  • 10 -6  - -  - -  1 7 . 4 4  

5 3 < 1 0  -8  2 - - 0 . 5 4 1 5 2 8  1 1 . 2 7  

NO(2•)/3 3 6  0 9 .0  • 10 -6  - -  - -  2 4 . 8 1  

5 4 < 1 0  -8  1 - 0 . 5 7 0 8 9 1  6 .72  

C3H4  2 5 0  0 2 .0  • 10 -4  - -  - -  2 9 9 . 0 6  

5 4 < 1 0  -8  0 - - 0 . 0 1 1 2 6 3  1 8 . 2 6  

5 4 < 1 0  -8  0 + 0 . 0 1 4 7 7 0  1 8 . 3 2  b 

0 4 < 1 0  -8  0 - 0 . 0 1 0 6 6 9  1 3 . 2 4  c 

N 2 0 4  2 7  0 5 .4  • 10 -7  - -  - -  8 7 0 . 6 1  

9 6 d 5 .8  X 10 -7  0 - - 0 . 4 8 3 4 6 6  5 6 8 . 4 3  

a T i m e  required for localization on a P D P - 1 1 / 4 4 ,  in minutes. 
b Saddle-point. 
c Convergence from eigenvector transformation (Eq.  (48)) following convergence to a saddle-point. 
d T w e l v e  M O  subset used to calculate the hessian matrix. 

4.3. Boron Fluoride 

Boron fluoride, like the isoelectronic molecular carbon monoxide, has a zero 
eigenvalue of the hessian matrix. Unlike CO, for which the vanishing eigenvalue 
is associated with a C--O triple bond, the zero eigenvalue for BF is associated 
with a set of three equivalent lone-pair orbitals on fluorine. As shown in Fig. 2, 
each of these fluorine lone-pairs involves significant contribution from the region 
of the boron atom. Consequently, the B-F-centroid angle formed by each of these 
orbitals is only 98.5 ~ instead of 109.5 ~ expected for idealized sp 3 hybrid orbitals. 
The angle between the B--F axis and the point of maximum density in each of 
these orbitals is 107.5 ~ indicating that the location of the orbital centroid reflects 
fluorine to boron delocalization rather than a large degree of rehybridization. 
This delocalization or "back-bonding" apparently increases the effective B--F 
bond order, resulting in a B--F bond which is 0.084 bohr shorter than that 
found in BF3 [48]. 

As shown in Table 4, the first-order (n x n) localization procedure converged 
much more slowly for BF than for CO. This sluggish convergence is caused by 
a relatively small eigenvalue (-0.050) of the hessian matrix. For this case, 
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4- 

Fig. 2. One of the three equivalent localized molecular orbitals representing the fluorine lone pairs 
in boron fluoride. The density contours shown here include 0.6 electrons per cubic bohr in addition 
to those occurring in Fig. 1. The fluorine nucleus is on the right 

activation of the second-order  procedure following six first-order iterations 
yielded rapid convergence to the final localized orbitals. The resulting centroids 
are provided in Table 3. 

4.4. Nitric Oxide 

Nitric oxide is a diatomic molecule with an odd number  of electrons. In addition, 
the 217I ground state has a half-filled set of ~- orbitals, giving the state open-shell  
character with respect to spatial coordinates as well as electronic spin. The 
current work is based on two unrestricted SCF wavefunctions: one for the 
(5cr)2(l'n')4(2"rrot)2H ground state, and one for the (5trfl)(l~')4(2"n'ot) 2 2Z excited 
state, both  using the 6-31G basis set [49] with eight orbitals occupied by a spin 
electrons and seven orbitals occupied by /3  spin electrons. The sets of a spin 
and /3 spin orbitals for each state were each localized separately, yielding 
a - L M O ' s  a n d / 3 - L M O ' s  [50]. 

The orbital centroids determined in these calculations are presented in Table 5. 
The centroids of the 2H state fit the pat tern expected on the basis of Linnett 's  
theory [16]. Because of the unfilled 27r orbital, the hessian matrix for the 
o~-LMO's has no zero eigenvalues. The hessian matrix for t he /3 -LMO's  has one 
small non-zero eigenvalue which reflects the inequivalence of the 17rx and 1Try 
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Fig. 3. One of two equivalent a-localized molecular orbitals comprising the nitrogen-oxygen double 
bond in the 211 electronic state of nitric oxide. The density contours are specified in Fig. 1. The 
oxygen nucleus is on the right 

canonical molecular orbitals in this wavefunction. The corresponding eigenvalue 
equals zero in the 2E electronic state where the 17rx and l~-y orbitals are related 
by a 90 ~ rotation. 

In the case of the a - L M O ' s ,  promot ion of one electron f rom the 50- (bonding) 
to the 2~- (antibonding) orbital decreases the ~ bond order f rom one to zero. 
This is reflected in a dramatic  change in the forms of the ~ - L M O ' s  in the 2E 
state compared  to the 211 state. The eight o t -LMO's  of the 2E state consist of 
two inner-shell orbitals and two sets of three equivalent orbitals. Each of the 
six valence L M O ' s  is essentially an sp 2 hybrid orbital oriented perpendicular to 
the internuclear axis. Each of these sets can be independently rotated about  the 
bond axis, resulting in two zero eigenvalues of the hessian matrix. A comparison 
of a 21-I bonding L M O  and a 2E non-bonding L M O  is presented in Figs. 3 and 
4. In this case, the order of the hessian matrix was reduced by two by striking 
out the two rows and columns corresponding to the largest components  of the 
eigenvectors with eigenvalues of zero. 

4.5. Methylacetylene 

As noted in the preceding section, the a - L M O ' s  for the 2t; electronic state of 
N O  include two sets of three equivalent orbitals, and each set may be rotated 
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Cr 

Fig. 4. One of the three equivalent a-localized molecular orbitals representing the non-bonding 
electrons on the nitrogen atom in the 2E electronic state of nitric oxide. The density contours are 
specified in Fig. 1 

independently of the other without changing the degree of localization. A similar 
situation occurs in methylacetylene,  which has a set of three equivalent C - - H  
bonds in the methyl  f ragment  and a set of three equivalent r -bonds  in the 
acetylene fragment.  The location of the protons determine the orientation of 
the C - - H  bond orbitals. In addition, the degree of localization is weakly depen-  
dent on the orientation of the ~'-bonds relative to the C - - H  bonds. Consequently, 
methylacetylene has no zero eigenvalues, but one of the non-zero eigenvalues 
is very small. 

The small non-zero eigenvalue, which is responsible for the orientation of the 
~--bonds with respect to the C - - H  bonds, causes severe convergence difficulties 
for the first-order transformation,  including corrventional methods based on 
(2 x 2) rotations as well as the (n x n) t ransformation determined by Eq. (44). 
Thus Kleier et al. [32] required over  200 iterations to satisfy their convergence 
criterion. As indicated in Table 4, over 250 iterations based on Eq. (44) are 
required to reduce Tr,~ to less than 10 -4. The first few iterations for these 
calculations proceed very well, with a rapid increase in the localization sum. 
After  approximately ten iterations, the orbitals are all close to their final forms, 
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Table 5. Molecular geometry and locations of orbital centroids of the LMO's for the 2II 
and 2E states of NO. These results are based on the orbital centroid criterion and a 6-31G 
atomic orbital basis set. All results are reported in atomic units 

Atom/Orbital X Y Z 

Nitrogen 0.0 0.0 0.0 
Oxygen 0.0 0.0 2.17474 

a LMO's(~H) 
Nirrogen-ls 0.0 0.0 0.000493 
Oxygen-Is 0.0 0.0 2.174295 
Oxygen-lp 1 -0.577608 0.000152 2.469459 
Oxygen-lp2 0.577608 -0.000152 2.469459 
Nirrogen-lp i -0.687794 0.000180 -0.326058 
Nitrogen-lp2 0.687794 -0.000180 -0.326058 
N--O b 1 -0.000106 -0.403531 1.094889 
N--O b2 0.000106 0.403531 1.094889 

fl -LMO's(2H) 
Nitrogen-Is 0.0 0.0 0.000897 
Oxygen-Is 0.0 0.0 2.174045 
Nitrogen- lp 0.0 0.000305 -0.639335 
Oxygen-lp 0.000006 0.022298 2.697048 
N--O b 1 -0.405828 0.220544 1.536620 
N--O b2 0.405944 0.220331 1.536620 
N--O b3 -0.000122 -0.463499 1.598522 

a- LMO's(~E) 
Nitrogen-Is 0.0 0.0 0.001414 
Oxygen- ls 0.0 0.0 2.173852 
Oxygen-n I -0.429662 -0.421784 2.153900 
Oxygen-n2 0.580106 -0.161206 2.153900 
Oxygen-n3 -0.150444 0.582990 2.153900 
Nitrogen-n 1 -0.648325 0.164070 0.057255 
Nitrogen-n2 0.466252 0.479431 0.057255 
Nitrogen-n 3 0.182073 -0.643501 0.057255 

/3 -LMO's(2E) 
Nitrogen-is 0.0 0.0 0.001023 
Oxygen-is 0.0 0.0 2.173972 
Nitrogen-lp 0.0 0.0 -0.684408 
Oxygen- lp 0.0 0.0 2.729738 
N--O bl  -0.463851 0.081248 1.521221 
N--O b2 0.302289 0.361083 1.521221 
N--O b3 0.161562 -0.442331 1.521221 

except for the o r i en ta t ion  of the set of r - b o n d s .  Subsequen t  i tera t ions  seem to 
become  progressively more  inefficient at ro ta t ing  this set of orbitals  into the 

correct  a l ignment .  

The  convergence  p rob lems  inhe ren t  in the f irst-order me thods  are caused by 
the need  to mix each pair  of z -bonds  by an a m o u n t  which depends  on their  
re la t ion  to each of the C - - H  bonds ,  no t  on  their  re la t ion  to each other.  The  
t r ans fo rmat ion  given in Eq.  (44), like the conven t iona l  (2 • 2) ro ta t ion  schemes, 
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considers only the pairwise interactions among the orbitals, and ignores the 
influence of a third orbital on the rotation of any pair of orbitals. Consequently, 
such methods not only converge very slowly, but they may yield premature  
apparent  convergence because of their insensitivity to the conditions required 
to obtain convergence. 

In order to overcome these difficulties, Kleier et al. [32] introduced the "eigenvec- 
tor method" ,  in which the t ransformation matrix, E is determined by the 
eigenvector of the hessian matrix associated with the eigenvalue of smallest 
magnitude. The second-order  approach proposed in Eq. (42) performs this type 
of t ransformation simultaneously for all eigenvalues of the hessian. In the case 
of methylacetylene,  the magnitude of the smallest eigenvalue is much smaller 
than any of the remaining eigenvalues, thus there is little difference between 
the effects of the current method and Kleier 's  approach. 

The method proposed here, however,  requires only the inversion of the hessian 
matrix and does not require the explicit calculation of any eigenvector or 
eigenvalue of G2, I t  is useful to calculate a small number  of eigenvalues and 
eigenvectors at beginning and end of a second-order  localization to check for 
zero or positive eigenvalues, but it is not necessary to calculate these quantities 
for every iteration. 

The orbital centroids for the LMO's  of methylacetylene are shown in Table 6. 
These results are based on a closed-shell SCF calculation using an S T O - 3 G  basis 
set, the experimental  geometry of Herzberg  [51], and the orbital centroid 

Table 6. Molecular geometry and locations of orbital centroids of LMO's for methylacety- 
lene (C3H4). These results are based on the orbital centroid criterion and a STO-3G 
atomic orbital basis set. All results are reported in atomic units 

Atom/Orbital X Y Z 

Carbon-1 0,0 1.140190 0.0 
Carbon-2 0.0 -1.140190 0.0 
Carbon-3 0.0 3.897190 0.0 
Hydrogen- 1 0.0 -3.145230 0.0 
Hydrogen-2 -1.961326 4.438292 0.0 
Hydrogen-3 0.980663 4.438292 1.698558 
Hydrogen-4 0.980661 4.438292 -1.698558 

Carbonl-ls 0.0 1.140041 0.0 
Carbon2-Is 0.0 -1.139978 0.0 
Carbon3-1s 0.0 3.896891 0.0 
C1-C2 r l  0.346250 -0.013709 0.599723 
C1-C2 r2 0.346250 -0.013709 -0.599723 
C1-C2 ~-3 -0.692500 -0.013709 0.0 
C1-C3 0.0 2.498181 0.0 
C2-H1 0.0 -2.502388 0.0 
C3-H2 -1.316232 4,272459 0.0 
C3-H3 0.658116 4.272459 1.139891 
C3-H4 0.658116 4.272459 -1.139890 
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criterion of localization. In agreement with the results of Kleier et al. [32], the 
C--C ,-bonds and the C--H bonds of the methyl group are in an eclipsed 
conformation. This is consistent with the expectation of hyperconjugation 
between the C--C triple bond and the methyl group, which has been previously 
invoked to account for the shortening of the bond linking the methyl and 
acetylene groups [51]. 

The staggered orientation of the C--C triple bond and the methyl group 
corresponds to a saddle-point in the localization criterion. The path from this 
saddle-point to the fully-localized configuration essentially consists of the rotation 
of the set of r-bonds by 60 ~ about the molecular axis. Such motion is represented 
by an eigenvector of the hessian matrix. The eigenvalue associated with this 
eigenvector is positive for the 30 ~ starting with the saddle-point (indicating 
divergence to the saddle-point) and negative for the 30 ~ from the midpoint of 
this path to the maximum (indicating proper convergence). The initial few 
iterations based on Eq. (44) essentially lead to a random point on (or near) this 
path. Consequently, there are roughly equal probabilities of converging to a 
saddle-point and converging to the maximum when Eq. (42) is utilized. 

Initial calculation based on Eqs. (42) and (44) led rapidly to maximum localization 
(eclipsed configuration). By making a minor change in the first iteration, starting 
with the canonical orbitals, it was possible to obtain convergence to the saddle- 
point (staggered) configuration. Such convergence is indicated by the presence 
of one (or more) positive eigenvalues of the hessian matrix. In order to move 
from the saddle-point towards a maximum, it is possible to move in the direction 
determined by the most positive eigenvalue through a transformation such as 

t = Av, (48) 

where v is the eigenvector associated with the most positive eigenvector and ,~ 
is a scalar. Application of such a transformation with ,~ = - 1  has been successful 
in obtaining convergence to maximum localization. For methylacetylene, four 
second-order iterations following the transformation determined by Eq. (48) 
were required to transform the orbitals from the staggered to the eclipsed 
conformation. 

4.6. Dinitrogen Tetroxide 

The preceding examples have demonstrated that the transformation determined 
by Eq. (42) is very effective at providing a rapidly convergent procedure for 
obtaining localized orbitals, including cases in which one or more eigenvalues 
of G2 are very small or zero. It is well known, however, that optimization 
procedures such as this which are based on Newton's method suffer from two 
serious problems. First, this type of procedure leads to a maximum only if all 
of the eigenvalues are either zero or negative, with convergence to a saddle-point 
occurring if any eigenvalues are positive. Consequently, it is not possible to 
apply this scheme until the quantities to be optimized are within some limited 
radius of convergence from the desired values. 
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In  the work  described here,  this p rob lem is resolved by the use of the approximate  
(n x n) t ransformat ion  of Eq. (44). This starting p rocedure  appears  to be very 
effective at p roducing  a hessian matrix whose  diagonal  e lements  are all negative. 
The  n u m b e r  of positive eigenvalues which remain  after all the diagonal  e lements  
are negative tends to be very small, and such situations may  be t rea ted  using 
methods  such as that  p resen ted  for methylace ty lene  in the preceding section. 

The  second prob lem is that  the hessian matrix becomes  ext remely  large for large 
molecules  [52]. T he  dimensionali ty of the hessian grows as n (n - 1 ) / 2 ,  where  n 
is the n u m b e r  of orbitals being localized. Because  of this, the number  of matrix 
e lements  increases as n 4, and the t ime required to invert or  diagonalize the 
hessian grows as n 6. D u e  to the delta functions conta ined in the definition of 
the off-diagonal  hessian matrix e lements  (Eq. (40)), the n u m b e r  of non-ze ro  
e lements  only grows as n 3, but  this has little influence on the n 6 effort required 

Table 7. Molecular geometry and locations of orbital centroids of the LMO's of N204. 
These results are based on the orbital centroid criterion and a double-zeta atomic orbital 
basis set. All results are reported in atomic units 

Atom/Orbital X Y Z 

Nitrogen-1 0.0 -1.653532 
Nitrogen-2 0.0 1.653532 
Oxygen-1 -2.050381 -2.530377 
Oxygen-2 2.050381 -2.530377 
Oxygen-3 -2.050381 2.530377 
Oxygen-4 2.050381 2.530377 

Nitrogenl-ls 0.0 -1.653548 
Nitrogen2-1s 0.0 1.653548 
Oxygenl-ls -2.050113 -2.530268 
Oxygen2-1s 2.050113 -2.530268 
Oxygen3-1s -2.050113 2.530268 
Oxygen4-1s 2.050113 2.530268 
N1-N2 0.0 0.0 
N1-OI r l  -1.235637 -2.174678 
N1-O1 r2 -1.235636 -2.174677 
N1-O2 wl 1.235637 -2.174677 
N1-O2 ~2 1.235636 -2.174677 
N2-O3 r l  -1.235636 2.174678 
N2-O3 r2 -1.235637 2.174678 
N2-O4 ~1 1.235636 2.174678 
N2-O4 r2 1.235636 2.174678 
Oxygenl-lpl -1.941846 -3.053272 
Oxygenl-lp2 -2.431660 -2.091921 
Oxygen2-1pl 2.431660 -2.091922 
Oxygen2-1p2 1.941846 -3.053272 
Oxygen3-1pl -1.941846 3.053272 
Oxygen3-1p2 -2.431659 2.091921 
Oxygen4-1pl 2.431660 2.091921 
Oxygen4-1p2 1.941846 3.053272 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

-0.405531 
0.405531 
0.405531 

-0.405531 
-0.405531 

0.405531 
-0.405531 

0.405531 
0.0 
0.0 

-0,000001 
0.0 
0.0 
0.0 
0.0 
0.0 
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to invert G2. At some point, the effort required to invert G2 overwhelms all 
other stages of the localization process, rendering this approach impractical for 
large molecules. 

In order to obtain a practical localization procedure which is applicable to 
arbitrarily large molecules, the following compromise scheme has been 
developed. Instead of calculating the hessian matrix for all members of a set of 
N orbitals, a subset of the n = 10 to 15 least determined orbitals may be selected 
based on the values of the quantities Dq, defined in Eq. (24). This results in a 
hessian matrix with a dimensionality of 45 to 105. Within this subset, the 
corresponding second-order subset transformation matrix is determined accord- 
ing to Eq. (42). The remaining elements of the full transformation matrix are 
then determined by Eq. (44). 

The location of the LMO centroids obtained from application of this compromise 
procedure to N204 are provided in Table 7. These results are based on the 
DZ SCF molecular orbitals of Snyder and Basch [46]. This molecular involves 
46 electrons in 23 molecular orbitals, with the resulting localized orbitals indicat- 
ing eight equivalent N--O r-bonds, eight equivalent oxygen lone pairs, six 
inner-shell orbitals and an N--N or-bond. For this calculation, a subset of n = 12 
orbitals was used to construct the hessian matrix. The composition of this subset 
was permitted to change from iteration to interation. 

Because the full hessian matrix is not used, this method is no longer quadratically 
convergent. This deviation results from the behavior of the orbitals not selected 
for inclusion into the hessian subset. These orbitals tend to be strongly determined 
irrespective of the other orbitals present. Consequently, as shown in Table 4, 
this procedure converges very rapidly, in spite of the compromise involved in 
the treatment of the hessian matrix. 

The localized orbitals obtained for this molecule imply a total of five bonds on 
each nitrogen atom. The Mulliken gross atomic population for each nitrogen, 
however, is only 6.62, indicating that each of the eight N--O ~--bonds is polarized 
slightly towards the oxygen atom. 

5. Conclusion 

The numerical results presented in this work demonstrate that highly converged 
localized molceular orbitals may be determined by a small number of first-order 
iterations based on Eq. (44), followed by a small number of second-order iter- 
ations based on Eq. (42). Applications to carbon monoxide, boron fluoride and 
nitric oxide demonstrate that eigenvalues of zero in the hessian matrix may be 
treated by freezing the appropriate elements of the transformation matrix. 

Application of this procedure to methylacetylene demonstrated that the method 
works well when one of the eigenvalues is very small. Calculations on methyl- 
acetylene also demonstrated a method for moving from a saddle-point to an 
extremum. 
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Calculations on the nitric oxide molecule demonstrated the application of this 
method to an open-shell molecule. These results show that changing the 
occupancy of a single pair of canonical molecular orbitals can cause a dramatic 
change in all of the resulting valence localized molecular orbitals. 

Calculations on dinitrogen tetroxide demonstrated the application of a composite 
method suitable for use on large molecules for which it is impractical to calculate 
and invert the entire hessian matrix. In this composite method, a subset hessian 
matrix is determined for a small number (in this case, twleve) of least-determined 
orbitals. The second-order procedure is used to calculate elements of the transfor- 
mation matrix mixing pairs of these orbitals. All remaining elements of the 
transformation matrix are determined by the first-order procedure. The set of 
least-determined orbitals is redetermined on each iteration. Convergence is no 
longer fully quadratic, but is found to be very rapid. 

In principle, the methods proposed here may be applied to the energy [9, 12, 13] 
and density [9, 11, 17] criteria of localization, as well as to the orbital centroid 
criterion [10, 14, 15]. Application of the second-order method to the orbital 
centroid criterion is facilitated by the fact that such calculations require no new 
integrals over molecular orbitals not required by first order methods. In contrast, 
application of the second-order procedure based on the other criteria requires 
on the order of n 3 integrals not required to localize a set of n orbitals by a 
first-order procedure. Consequently, all numerical results reported in this work 
are based on the orbital centroid criterion. Alternative procedures more 
appropriate to the other criteria will be presented in a separate paper [53]. 

Acknolwedgments. Acknowledgement is made to the donors of the Petroleum Research Fund 
administered by the American Chemical Society for partial support of this research. Most of the 
calculations reported here were performed on a PDP-11/44 computer in the Department of 
Chemistry at Duke University. 

Appendix: Symmetric Orthonormalization 

The matrix W defined in Eq. (28) can be written as 

W = (I + S)  -1/2, (A. 1) 

where I is the unit matrix and S is the off-diagonal overlap matrix for the 
normalized but non-orthogonal  orbitals determined by the matrix R defined by 
Eqs. (30)-(33). It is crucial for these calculations that the matrix W be positive 
definite. This is not guaranteed by conventional methods for calculating 
(I+S) -~/2 based on the use of Givens-Householder  methods to diagonalize 
(I+S). These methods may yield a matrix W', which is related to W by an 
arbitrary unitary transformation, and which is not positive definite. This is of no 
consequence in the solution of the SCF equations for a non-orthogonal  set of 
atomic orbitals because the resulting canonical orbitals are not affected by this 
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arbitrary transformation. In the calculation of LMO's, however, such a transfor- 
mation completely destroys the localization process. Consequently, an alternate 
method has been adopted. The matrix (I + 8)  -1/2 can be written as [41] 

(/+ $)-1/2 = ! _  (1 /2 )S  + ( 3 / 8 ) $  2 + . . . .  (A.2) 

If the elements of $ are very small, this series converges rapidly. The first few 
iterations of a localization procedure, however, may yield overlap matrix ele- 
ments with magnitudes of 0.1 or greater. In this case, the series could require 
many more terms to obtain satisfactory convergence. To avoid the use of 
additional terms in Eq. (A.2), an iterative procedure has been devised and found 
to be very effective. 

The expansion for the matrix (! + 8)  -1/2 can be truncated after second-order in 
8, giving 

W z = I - (1/2)8 ~ + (3/8)($t) 2. (A.3) 

This may be used to determine a new set of orbitals defined by 

qb (r+i~ = OI~b I, (A.4) 

where O z = WZN I, and W ~ is determined by Eq. (A.3). The overlap matrix in 
Eq. (A.3) is given by 

51 = NZS~N I (A.5) 

where 

S~q = (~b~l~b/) (A.6) 

and 

N~ = S~q 1/:8q. (A.7) 

This is repeated until the RMS value of S t is sufficiently small. Fewer than five 
iterations are usually required to reduce the RMS value from 0.1 to less than 
10 -l~ In extreme eases, where the RMS value of 81 is greater than 0.5, the 
procedure can be divergent. This is likely to occur on early iterations of a 
localization, where the orbitals may be extensively delocalized and 45 ~ pairwise 
rotations are common. This may be corrected by decreasing the magnitude of 
the transformation being performed. For example, the magnitude of the off- 
diagonal elements of the transformation matrix, r, may be reduced by a scalar 
factor until convergence is obtained. 
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